Approximating complex functions in mixed integer non-linear optimization: a hybrid data- and knowledge-driven approach

Claudia D'Ambrosio

LIX CNRS, École Polytechnique, Institut Polytechnique de Paris

joint work with

M. Cuesta, M. Durbán, V. Guerrero, R. Spencer Trindade

Acknowledgments

Programme Gaspard Monge pour l'Optimisation (PGMO), Integrated Urban Mobility (IUM) chair, PID2019-104901RB-100, PDC2022-133359-100, PID2022-137240B-100 and IJC2020-045220-I (funded by MCIN/AEI/10.13039/501100011033 and the last also supported by European Union "NextGenerationEU/PRTR" funds).

MIP Workshop 2025, Minneapolis, U.S.A.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational Results

- Hydro Unit Commitment
- 4. Conclusions & Ongoing work

1. Introduction

- 2. Data-driven and knowledge-driven surrogate MINLPs
 - Additive regression models with constraints
 - Sequential Convex MINLP
 - The proposed approach
- 3. Preliminary Computational ResultsHydro Unit Commitment
- 4. Conclusions & Ongoing work

Introduction

Solving MINLP problems faster by replacing complex functions with simpler ones (surrogate).

$$\begin{array}{ll} \min_{x \in \mathbb{R}^{p}} g_{0}(x) \\ g_{m}(x) \leq 0 \\ x_{j} \in \mathbb{Z} \\ \underline{x}_{j} \leq x_{j} \leq \overline{x}_{j} \end{array} \qquad \forall m = 1, \dots, \overline{m} \\ \forall j \in I \subseteq \{1, \dots, p\} \\ \forall j \in \{1, \dots, p\}.
\end{array}$$

Introduction

Solving MINLP problems faster by replacing complex functions with simpler ones (surrogate).

$$\begin{array}{ll} \min_{x \in \mathbb{R}^{p}} \tilde{g}_{0}(x) \\ \tilde{g}_{m}(x) \leq 0 & \forall m = 1, \dots, \overline{m} \\ x_{j} \in \mathbb{Z} & \forall j \in I \subseteq \{1, \dots, p\} \\ \underline{x}_{j} \leq x_{j} \leq \overline{x}_{j} & \forall j \in \{1, \dots, p\}. \end{array}$$

Knowledge-driven Approaches

Rebennack and Kallrath [2015]: PWL approximation of bivariate functions. Under- or over-estimate.

Guarantee that the approximation error remains within a given tolerance.

Codsi et al. [2025], Duguet and Ngueveu [2022]: PWL approximation of univariate/bivariate functions.

Bounded approximation error while minimizing the number of pieces of the PWL approximation.

Gößet al. [2025]: parabolic approximations of MINLPs. To find the surrogate function \rightarrow solve MILPs.

Data-driven Approaches

Sample $g(x) \rightarrow \text{learn } \tilde{g}(x)$ with MILP-repres ML \rightarrow solve \tilde{P}

- Bertsimas and Öztürk [2023]: hyperplane-based decision-trees
- Bertsimas and Margaritis [2025]: gradient boosted trees, multi layer perceptrons, support vector machine

Data- vs Knowledge-driven Approaches: Limitations

Data-driven:

- too simplistic to capture the structure of the original MINLP Geißler et al. [2012]
- ▶ lack of interpretability [Goodman and Flaxman, 2017, Rudin et al., 2022]
- difficulty of incorporating expert knowledge [Gambella et al., 2021]

Knowledge-driven:

- \blacktriangleright tailored to specific nonlinear function \rightarrow challenging generalization
- finding the surrogate might be time consuming, e.g., MILP solving Gößet al. [2025]

Mixed-integer Smoothing Surrogate Optimization with Constraints (MiSSOC)

- Data-driven approach where expert knowledge can be integrated
- ▶ B-splines → piecewise polynomials
- Surrogate problem \tilde{P} is MINLP but more tractable \rightarrow better approx?
- This flexibility comes at the expense of not being able to guarantee an error bound on the entire domain.

Data+Knowledge-driven Approaches

Data+knowledge-driven approach: extension of [Navarro-García, Guerrero, and Durban, 2023, 2024] to constrained smooth additive regression models

Surrogate MINLPs: MINLPs in which non-convexities in the objective function and/or constraints are sum of non-convex univariate functions [D'Ambrosio et al., 2012b, Spencer Trindade et al., 2023].

Key point: Find tradeoff between approximation quality and tractability.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational Results Hydro Unit Commitment

4. Conclusions & Ongoing work

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational Results Hydro Unit Commitment

4. Conclusions & Ongoing work

Additive regression models

Approximate complex multivariate functions of the general MINLPs by simpler surrogate functions, f₁, f₂,..., f_p.

$$y = g(x_1, x_2, \dots, x_p) \approx f_1(x_1) + f_2(x_2) + \dots + f_p(x_p)$$

Each f_i is approximated by a linear combination of B-splines basis functions.

Univariate smoothing with B-splines

 $\{(x_i, y_i)\}, i = 1, ..., n, \text{ are } n \text{ realizations in the sample of a function } y_i = g(x_i)$

k = number of intervals in which the domain is split $\rightarrow k + 1$ "internal" knots (equally-spaced and increasing, w.l.o.g.).

Function g is approx as a linear combination of k + d B-splines of degree d.

Coefficients θ_j , for $j = 1, \ldots, k + d$, are found by solving:

$$\min_{\substack{\theta_j \in \mathbb{R} \\ j=1,\dots,k+d}} \sum_{i=1}^n \left(y_i - \sum_{j=1}^{k+d} \theta_j B_{j,d,\mathbf{t}}(x_i) \right)^2$$

s.t. Sign, monotonicity or shape requirements if needed.

B_{j,d,t}(x_i); j-th B-spline basis function associated evaluated at x_i;
 θ_j is the coefficient associated to the j-th basis function

Data-driven surrogate MINLP

The complex multivariate function

$$y = g(x) \approx f_1(x_1) + f_2(x_2) + \ldots + f_p(x_p)$$

is approximated by sums of univariate piecewise polynomial functions.

▶ Function g appearing in the MINLP is replaced by this approximation.

Why sum of **univariate surrogate function**?

Computational tractability: SC-MINLP can be used to obtain the global solution of such a surrogate MINLP model, as well as other MINLP solvers.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational ResultsHydro Unit Commitment

4. Conclusions & Ongoing work

Sequential Convex - MINLP (SC-MINLP) [D'Ambrosio et al., 2012b, Spencer Trindade et al., 2023] solves MINLPs in which non-convexities in the objective function and/or constraints appear as the sum of non-convex univariate functions faster than standard solvers for MINLPs.

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & \sum_{j \in N} c_j x_j \\ \text{subject to} & h(x) \leq 0, \\ & r_i(x) + \sum_{k \in H(i)} f_{ik}(x_k) \leq 0 \quad i \in M, \\ & l_j \leq x_j \leq u_j \qquad \quad \forall j \in N, \\ & x_j \text{ integer} \qquad \quad \forall j \in J, \end{array}$$

where $N = \{1, \ldots, n\}$, $M = \{1, \ldots, m\}$, $H(i) \subseteq N$, $J \subseteq N$, $h : \mathbb{R}^n \longrightarrow \mathbb{R}^q$ and $r_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ are multivariate convex functions and $f_{ik} : \mathbb{R} \longrightarrow \mathbb{R}$ are non-convex univariate functions, $\forall k \in H(i), \forall i \in M$.

The SC-MINLP: iterative technique

Lower bound: solve a convex MINLP relaxation of the separable MINLP.

- Computing a piecewise-convex relaxation of each f_{ik}: the concave parts are substituted for linear functions and the convex parts are kept as they are.
- ► Upper bound: solve a non-convex NLP restriction of the separable MINLP problem obtained by fixing the variables x_j ∈ J.
 - Locally solving the non-convex NLP restriction an upper bound of the original MINLP problem is obtained.
- Refinement technique: improve the quality of the lower bound and thus decrease the gap between the lower and upper bounds.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach
- 3. Preliminary Computational ResultsHydro Unit Commitment

4. Conclusions & Ongoing work

Input: Problem P; degree d; intervals k.

Using random sampling, generate set $\mathcal{T} = \{(x_i, g_0(x_i)), i = 1, \dots, n\}$. $\tilde{g}_0 \leftarrow \text{estimate } g_0 \text{ using data in } \mathcal{T}$. Generate \tilde{P} using \tilde{g}_0 . $\tilde{\mathbf{x}} \leftarrow \text{ solution of } \tilde{P} \text{ with SC-MINLP.}$ $\mathbf{x}^* \leftarrow \text{ solve the restricted NLP using } \tilde{\mathbf{x}} \text{ as a warm start.}$

Output: $\tilde{\mathbf{x}}$; \mathbf{x}^* .

 \tilde{P} has a piecewise polynomial function replacing complex $g_m(x)$ for $m \in C = \{0\}$.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational Results

Hydro Unit Commitment

4. Conclusions & Ongoing work

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor with 64GB RAM.

Preliminary test:

- Number of intervals of the B-spline k = 10
- Degree of the polynomials: d = 3

Surrogate functions found in milliseconds.

1. Introduction

2. Data-driven and knowledge-driven surrogate MINLPs

- Additive regression models with constraints
- Sequential Convex MINLP
- The proposed approach

3. Preliminary Computational Results

Hydro Unit Commitment

4. Conclusions & Ongoing work

Single-reservoir Hydro Unit Commitment Problem

Several units which can operate as turbine/pump or be off.

Principle of a pumped-storage power plant

▶ Turbine: water flow *q* goes downhill and produces power *p*.

Pump: water flow q goes uphill and consumes power p.

Single reservoir HUC, Taktak & D'A. (2017)

Physical constraints:

- Water flow balance equations
- Respect allowed operational points: (dis-)continuous, discrete, turbine/pump related
- Forbid of simultaneous pump and turbine mode
- Power production depending on water flow and head effect
- Minimum number of periods to be spent in a status by the unit (minimum starting up/down times)
- spillage

Strategic constraints:

- Ramp up/down bound constraint
- Irrigation requirement/Ecological flows/Water rights
- Load balance equations constraints
- Minimum release of water per period
- Minumum final reservoir level

Objective Function:

Maximize profit

HUC: the complex function

Power function:

$$\varphi(q, v) = \frac{9.81}{1000} \cdot q \cdot \sum_{h=0}^{6} \left(L_h q^h \left(\sum_{k=0}^{6} K_k (1000^k v^k) - \underline{L} - R_0 q^2 \right) \right)$$

q = water flow in the unit [m³/s] v = water volume in the basin [m³]

Hydro Unit Commitment

			$\begin{array}{c} Surrogate \\ f(v,q) \end{array}$			$\begin{array}{c} Surrogate \\ f(v,q,v+q) \end{array}$		
		MINLP	B-splines degree			B-splines degree		
			2	3	4	2	3	4
	Real Objetive	3692.91	14538.87	14540.09	14540.08	14517.91	14385.71	14539.90
Baron	Surrogate Objective		14615.62	14617.81	14617.62	14527.46	14392.81	14546.37
	Time	600.00	156.41	413.79	446.69	600.24	600.22	600.70
	Real Objective	7285.32	14184.88	3578.29	12996.68	14024.72	14018.56	14023.47
Bonmin	Surrogate Objective		14226.42	3384.58	13059.56	14036.07	14026.22	14031.38
	Time	1.11	607.74	607.79	607.37	604.90	607.91	605.15
	Real Objective	-	10383.09	12697.24	11548.79	-	-906.69	-19510.34
Couenne	Surrogate Objective		10394.44	12797.97	11589.48	-	-908.53	-19510.44
	Time	0.22	604.46	601.67	601.65	0.36	604.97	603.74
	Real Objective		14538.77	14540.08	14540.05	14539.25	14540.12	14540.10
SC-MINLP	Surrogate Objective		14615.61	14617.79	14617.60	14545.02	14546.98	14546.51
	Time		1.52	1.55	1.58	600.02	600.18	600.07

Hydro Unit Commitment

			$\frac{Surrogate}{f(v,q)}$			$\begin{array}{c} Surrogate \\ f(v,q,v+q) \end{array}$		
		MINLP	B-splines degree			B-splines degree		
			2	3	4	2	3	4
	Real Objetive	3692.91	14538.87	14540.09	14540.08	14517.91	14385.71	14539.90
Baron	Surrogate Objective		14615.62	14617.81	14617.62	14527.46	14392.81	14546.37
	Time	600.00	156.41	413.79	446.69	600.24	600.22	600.70
	Real Objective	7285.32	14184.88	3578.29	12996.68	14024.72	14018.56	14023.47
Bonmin	Surrogate Objective		14226.42	3384.58	13059.56	14036.07	14026.22	14031.38
	Time	1.11	607.74	607.79	607.37	604.90	607.91	605.15
	Real Objective	-	10383.09	12697.24	11548.79	-	-906.69	-19510.34
Couenne	Surrogate Objective		10394.44	12797.97	11589.48	-	-908.53	-19510.44
	Time	0.22	604.46	601.67	601.65	0.36	604.97	603.74
	Real Objective		14538.77	14540.08	14540.05	14539.25	14540.12	14540.10
SC-MINLP	Surrogate Objective		14615.61	14617.79	14617.60	14545.02	14546.98	14546.51
	Time		1.52	1.55	1.58	600.02	600.18	600.07

Degree 1 (MILP): Time 0.23"; Surrogate obj 14633.39; Real obj 14533.96

Hydro Unit Commitment

			$\begin{array}{c} Surrogate \\ f(v,q) \end{array}$			$\begin{array}{c} Surrogate \\ f(v,q,v+q) \end{array}$		
		MINLP	B-splines degree			B-splines degree		
			2	3	4	2	3	4
	Real Objetive	3692.91	14538.87	14540.09	14540.08	14517.91	14385.71	14539.90
Baron	Surrogate Objective		14615.62	14617.81	14617.62	14527.46	14392.81	14546.37
	Time	600.00	156.41	413.79	446.69	600.24	600.22	600.70
	Real Objective	7285.32	14184.88	3578.29	12996.68	14024.72	14018.56	14023.47
Bonmin	Surrogate Objective		14226.42	3384.58	13059.56	14036.07	14026.22	14031.38
	Time	1.11	607.74	607.79	607.37	604.90	607.91	605.15
	Real Objective	-	10383.09	12697.24	11548.79	-	-906.69	-19510.34
Couenne	Surrogate Objective		10394.44	12797.97	11589.48	-	-908.53	-19510.44
	Time	0.22	604.46	601.67	601.65	0.36	604.97	603.74
	Real Objective		14538.77	14540.08	14540.05	14539.25	14540.12	14540.10
SC-MINLP	Surrogate Objective		14615.61	14617.79	14617.60	14545.02	14546.98	14546.51
	Time		1.52	1.55	1.58	600.02	600.18	600.07

1. Introduction

- 2. Data-driven and knowledge-driven surrogate MINLPs
 - Additive regression models with constraints
 - Sequential Convex MINLP
 - The proposed approach
- 3. Preliminary Computational Results
 Hydro Unit Commitment
- 4. Conclusions & Ongoing work

Conclusions & Ongoing work

- Statistical modeling + mathematical optimization to get surrogate MINLPs.
- Think about approximation quality and tractability when identifying the surrogate function.
- Tailored and general-purpose solvers.

Ongoing work:

- More extensive and stable results (test new gurobi).
- Considering black-box functions.
- Under/over estimation to obtain lower/upper bounds.

Future work:

- How to select intervals, degree, or, in general, surrogate function property?
- Dynamically add B-spline basis functions to increase the quality of the approximation in some regions.

References

- D. Bertsimas and G. Margaritis. Global optimization: a machine learning approach. *Journal on Global Optimization*, 2025.
- D. Bertsimas and B. Öztürk. Global optimization via optimal decision trees. *Journal on Global Optimization*, 2023.
- A. Bhosekar and M. Ierapetritou. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. *Computers & Chemical Engineering*, 108:250–267, 2018.
- Julien Codsi, Sandra Ulrich Ngueveu, and Bernard Gendron. Lina: a faster approach to piecewise linear approximations using corridors and its application to mixed-integer optimization. *Mathematical Programming Computation*, 17(2):265–306, 6 2025. ISSN 1867-2957.
- Carl De Boor. A practical guide to splines, volume 27. Springer, New York, 1978.
- Aloïs Duguet and Sandra Ulrich Ngueveu. Piecewise linearization of bivariate nonlinear functions: Minimizing the number of pieces under a bounded approximation error. In Ivana Ljubić, Francisco Barahona, Santanu S. Dey, and A. Ridha Mahjoub, editors, *Combinatorial Optimization*, pages 117–129, Cham, 2022. Springer International Publishing.
- C. D'Ambrosio, J. Lee, and A. Wächter. An algorithmic framework for MINLP with separable non-convexity. In J. Lee and S. Leyffer, editors, *Mixed Integer Nonlinear Programming*, volume 154 of *The IMA Volumes in Mathematics and its Applications*, pages 315–347. Springer, New York, 2012a.
- C. D'Ambrosio, J. Lee, and A. Wächter. An algorithmic framework for MINLP with separable non-convexity. In J. Lee and S. Leyffer, editors, *Mixed Integer Nonlinear Programming*, volume 154 of *The IMA Volumes in Mathematics and its Applications*, pages 315–347. Springer, New York, 2012b.
- C. D'Ambrosio, A. Frangioni, and C. Gentile. Strengthening the sequential convex MINLP technique by perspective reformulations. *Optimization Letters*, 13:673–684, 2019.
- C. Gambella, B. Ghaddar, and J. Naoum-Sawaya. Optimization problems for machine learning: a survey. Eurpean Journal of Operational Research, 290(3):807–828, 2021.

References

- B. Geißler, A. Martin, A. Morsi, and L. Schewe. Using piecewise linear functions for solving MINLPs. In J. Lee and S. Leyffer, editors, *Mixed Integer Nonlinear Programming*, volume 154 of *The IMA Volumes in Mathematics and its Applications*, pages 287–314. Springer, New York, 2012.
- B. Goodman and S. Flaxman. European union regulations on algorithmic decision-making and a "right to explanation". AI Magazine, 38(3):50–57, 2017.
- Adrian Göß, Robert Burlacu, and Alexander Martin. Parabolic approximation & relaxation for minlp, 2025. URL https://arxiv.org/abs/2407.06143.
- B. Grimstad and A. Sandnes. Global optimization with spline constraints: a new branch-and-bound method based on B-splines. *Journal of Global Optimization*, 65:401–439, 2016.
- M. Navarro-García, V. Guerrero, and M. Durban. On constrained smoothing and out-of-range prediction using p-splines: a conic optimization approach. *Applied Mathematics and Computation*, 441:127679, 2023.
- M. Navarro-García, V. Guerrero, and M. Durban. A mathematical optimization approach to shape-constrained generalized additive models. *Expert Systems with Applications*, 255(C):124654, 2024.
- Steffen Rebennack and Josef Kallrath. Continuous piecewise linear delta-approximations for bivariate and multivariate functions. Journal of Optimization Theory and Applications, 167(1):102–117, 10 2015.
- C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong. Interpretable machine learning: fundamental principles and 10 grand challenges. *Statistics Surveys*, 1:1–85, 2022.
- R. Spencer Trindade, C. D'Ambrosio, A. Frangioni, and C. Gentile. Comparing perspective reformulations for piecewise-convex optimization. *Operations Research Letters*, 51(6):702–708, 2023.
- Juan Pablo Vielma, Shabbir Ahmed, and George Nemhauser. Mixed-integer models for nonseparable piecewise-linear optimization: Unifying framework and extensions. *Operations Research*, 58(2):303–315, 2009.

 $\sum \sum \left(\tau \Pi_t p_{jt} - C_j \widetilde{w}_{jt} - (D_j + \Pi_t E_j) \widetilde{z}_{jt} \right)$ maximize subject to $v_{\bar{t}} = V_{\bar{t}}$, $v_t = v_{t-1} + 3600 \tau \left(I_t - \sum_{j \in I} q_{jt} - s_t \right)$ $t \in T$. $-Q^{-} \leq \sum (q_{jt} - q_{jt-1}) \leq +Q^{+}$ $t \in T$, $Q_j^- u_{jt} + \underline{Q}_j \ g_{jt} \leq q_{jt} \leq Q_j^- u_{jt} + \overline{Q}_j \ g_{jt}$ $i \in J, t \in T$ $P_i^- u_{jt} + \underline{P}_i \ g_{jt} \leq p_{jt} \leq P_i^- u_{jt} + \overline{P}_i \ g_{jt}$ $i \in J, t \in T$. $\sum q_{jt} + s_t \geq \Theta$ $t \in T$, $s_t - \sum_{j \in J} \left(W_j \, \widetilde{w}_{jt} + Y_j \, \widetilde{z}_{jt} \right) \ge 0$ $t \in T$. $q_{it} + u_{kt} < 1$ $j \in J, k \in J, t \in T$ $q_{it} - q_{it-1} - (\tilde{w}_{it} - w_{it}) = 0$ $i \in J, t \in T$. $i \in J, t \in T$. $\widetilde{w}_{it} + w_{it} < 1$ $u_{jt} - u_{jt-1} - (\tilde{z}_{jt} - z_{jt}) = 0$ $i \in J, t \in T$ $\widetilde{z}_{it} + z_{jt} \leq 1$ $i \in J, t \in T$. $p_{jt} \le 9.81q_{jt} \sum_{i=1}^{6} \left(L_h q_{jt}^h \left(\sum_{i=1}^{6} K_k v_t^k - \underline{L} - R_0 q_{jt}^2 \right) \right) g_{jt}$ $j \in J, t \in T,$ $i \in J, t \in T$. $g_{it}, u_{it}, \widetilde{w}_{it}, \widetilde{z}_{it}, w_{it}, z_{it} \in \{0, 1\}$ $Q_i^- \leq q_{jt} \leq \overline{Q}_j, \, \underline{V} \leq v_t \leq \overline{V}, \, P_i^- \leq p_{jt} \leq \overline{P}_j, \, 0 \leq s_t \leq \overline{S} \quad j \in J, \, t \in T.$