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Introduction

▶ Solving MINLP problems faster by replacing complex functions with
simpler ones (surrogate).

min
x∈Rp

g0(x)

gm(x) ≤ 0 ∀m = 1, . . . ,m

xj ∈ Z ∀j ∈ I ⊆ {1, . . . , p}
xj ≤ xj ≤ xj ∀j ∈ {1, . . . , p}.

MINLP with
complex

functions g(x)

Surrogate
MI(NL)P

with surrogate
functions g̃(x)
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Knowledge-driven Approaches

MINLP with
complex

functions g(x)

Surrogate MI(NL)P
with surrogate
functions g̃(x)

Knowledge-driven
approach

Rebennack and Kallrath [2015]: PWL approximation of bivariate functions.
Under- or over-estimate.
Guarantee that the approximation error remains within a given tolerance.

Codsi et al. [2025], Duguet and Ngueveu [2022]: PWL approximation of
univariate/bivariate functions.
Bounded approximation error while minimizing the number of pieces of the PWL
approximation.

Gößet al. [2025]: parabolic approximations of MINLPs.
To find the surrogate function → solve MILPs.
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Data-driven Approaches

MINLP with
complex

functions g(x)

Surrogate MI(NL)P
with surrogate
functions g̃(x)

Data-driven
approach

Sample g(x) → learn g̃(x) with MILP-repres ML → solve P̃

▶ Bertsimas and Öztürk [2023]: hyperplane-based decision-trees

▶ Bertsimas and Margaritis [2025]: gradient boosted trees, multi layer
perceptrons, support vector machine

C. D’Ambrosio et al. Data+knowledge driven approach for MINLPs 6 / 24



Data- vs Knowledge-driven Approaches: Limitations

Data-driven:

▶ too simplistic to capture the structure of the original MINLP Geißler et al.
[2012]

▶ lack of interpretability [Goodman and Flaxman, 2017, Rudin et al., 2022]

▶ difficulty of incorporating expert knowledge [Gambella et al., 2021]

Knowledge-driven:

▶ tailored to specific nonlinear function → challenging generalization

▶ finding the surrogate might be time consuming, e.g., MILP solving Gößet al.
[2025]
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Data+Knowledge-driven Approach

Mixed-integer Smoothing Surrogate Optimization with Constraints (MiSSOC)

▶ Data-driven approach where expert knowledge can be integrated

▶ B-splines → piecewise polynomials

▶ Surrogate problem P̃ is MINLP but more tractable → better approx?

▶ This flexibility comes at the expense of not being able to guarantee an error
bound on the entire domain.
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Data+Knowledge-driven Approaches

MINLP with
complex

functions g(x)

Surrogate
MI(NL)P

with surrogate
functions g̃(x)

Data+knowledge

▶ Data+knowledge-driven approach: extension of [Navarro-Garćıa,
Guerrero, and Durban, 2023, 2024] to constrained smooth additive
regression models

▶ Surrogate MINLPs: MINLPs in which non-convexities in the objective
function and/or constraints are sum of non-convex univariate functions
[D’Ambrosio et al., 2012b, Spencer Trindade et al., 2023].

Key point: Find tradeoff between approximation quality and tractability.
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Additive regression models

▶ Approximate complex multivariate functions of the general MINLPs by
simpler surrogate functions, f1, f2, . . . , fp.

y = g(x1, x2, . . . , xp) ≈ f1(x1) + f2(x2) + . . .+ fp(xp)

▶ Each fj is approximated by a linear combination of B−splines basis functions.
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Univariate smoothing with B−splines

{(xi, yi)}, i = 1, . . . , n, are n realizations in the sample of a function yi = g(xi)

k = number of intervals in which the domain is split → k + 1 “internal” knots
(equally-spaced and increasing, w.l.o.g.).

Function g is approx as a linear combination of k + d B−splines of degree d.

Coefficients θj , for j = 1, . . . , k + d, are found by solving:

min
θj∈R

j=1,...,k+d

n∑
i=1

yi −
k+d∑
j=1

θjBj,d,t(xi)

2

s.t. Sign, monotonicity or shape requirements if needed.

▶ Bj,d,t(xi); j−th B−spline basis function associated evaluated at xi;

▶ θj is the coefficient associated to the j−th basis function
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Data-driven surrogate MINLP

▶ The complex multivariate function

y = g(x) ≈ f1(x1) + f2(x2) + . . .+ fp(xp)

is approximated by sums of univariate piecewise polynomial functions.

▶ Function g appearing in the MINLP is replaced by this approximation.

Why sum of univariate surrogate function?

Computational tractability: SC-MINLP can be used to obtain the global
solution of such a surrogate MINLP model, as well as other MINLP solvers.
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Sequential Convex - MINLP

Sequential Convex - MINLP (SC-MINLP) [D’Ambrosio et al., 2012b,
Spencer Trindade et al., 2023] solves MINLPs in which non-convexities in the
objective function and/or constraints appear as the sum of non-convex univariate
functions faster than standard solvers for MINLPs.

minimize
x

∑
j∈N

cjxj

subject to h(x) ≤ 0,

ri(x) +
∑

k∈H(i)

fik(xk) ≤ 0 i ∈M,

lj ≤ xj ≤ uj ∀j ∈ N,

xj integer ∀j ∈ J,

where N = {1, . . . , n}, M = {1, . . . ,m}, H(i) ⊆ N, J ⊆ N, h : Rn −→ Rq and
ri : Rn −→ R are multivariate convex functions and fik : R −→ R are non-convex
univariate functions, ∀k ∈ H(i), ∀i ∈M.
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Sequential Convex - MINLP

The SC-MINLP: iterative technique

▶ Lower bound: solve a convex MINLP relaxation of the separable MINLP.

Computing a piecewise-convex relaxation of each fik: the concave parts are
substituted for linear functions and the convex parts are kept as they are.

▶ Upper bound: solve a non-convex NLP restriction of the separable
MINLP problem obtained by fixing the variables xj ∈ J .

Locally solving the non-convex NLP restriction an upper bound of the original
MINLP problem is obtained.

▶ Refinement technique: improve the quality of the lower bound and thus
decrease the gap between the lower and upper bounds.
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Sequential Convex - MINLP
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The proposed approach

Input: Problem P ; degree d; intervals k.

Using random sampling, generate set T = {(xi, g0(xi)), i = 1, . . . , n}.
g̃0 ← estimate g0 using data in T .
Generate P̃ using g̃0.
x̃← solution of P̃ with SC-MINLP.
x∗ ← solve the restricted NLP using x̃ as a warm start.

Output: x̃; x∗.

P̃ has a piecewise polynomial function replacing complex gm(x) for m ∈ C = {0}.
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Preliminary Computational Results

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor with 64GB RAM.

Preliminary test:

▶ Number of intervals of the B-spline k = 10

▶ Degree of the polynomials: d = 3

Surrogate functions found in milliseconds.
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Single-reservoir Hydro Unit Commitment Problem

Several units which can operate as turbine/pump or be off.

▶ Turbine: water flow q goes downhill and produces power p.
▶ Pump: water flow q goes uphill and consumes power p.
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Single reservoir HUC, Taktak & D’A. (2017)

Physical constraints:

▶ Water flow balance equations

▶ Respect allowed operational points: (dis-)continuous, discrete, turbine/pump related

▶ Forbid of simultaneous pump and turbine mode

▶ Power production depending on water flow and head effect

▶ Minimum number of periods to be spent in a status by the unit (minimum starting
up/down times)

▶ spillage

▶ ...

Strategic constraints:

▶ Ramp up/down bound constraint

▶ Irrigation requirement/Ecological flows/Water rights

▶ Load balance equations constraints

▶ Minimum release of water per period

▶ Minumum final reservoir level

Objective Function:

▶ Maximize profit
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HUC: the complex function

Power function:

φ(q, v) =
9.81

1000
· q ·

6∑
h=0

(
Lhq

h

(
6∑

k=0

Kk(1000
kvk)− L−R0q

2

))

q = water flow in the unit [m3/s]
v = water volume in the basin [m3]
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Hydro Unit Commitment

Surrogate
f(v, q)

Surrogate
f(v, q, v + q)

B-splines degree B-splines degreeMINLP
2 3 4 2 3 4

Real
Objetive

3692.91 14538.87 14540.09 14540.08 14517.91 14385.71 14539.90

Surrogate
Objective

14615.62 14617.81 14617.62 14527.46 14392.81 14546.37
Baron

Time 600.00 156.41 413.79 446.69 600.24 600.22 600.70

Real
Objective

7285.32 14184.88 3578.29 12996.68 14024.72 14018.56 14023.47

Surrogate
Objective

14226.42 3384.58 13059.56 14036.07 14026.22 14031.38
Bonmin

Time 1.11 607.74 607.79 607.37 604.90 607.91 605.15

Real
Objective

- 10383.09 12697.24 11548.79 - -906.69 -19510.34

Surrogate
Objective

10394.44 12797.97 11589.48 - -908.53 -19510.44
Couenne

Time 0.22 604.46 601.67 601.65 0.36 604.97 603.74

Real
Objective

14538.77 14540.08 14540.05 14539.25 14540.12 14540.10

Surrogate
Objective

14615.61 14617.79 14617.60 14545.02 14546.98 14546.51
SC-MINLP

Time 1.52 1.55 1.58 600.02 600.18 600.07
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Conclusions & Ongoing work

▶ Statistical modeling + mathematical optimization to get surrogate
MINLPs.

▶ Think about approximation quality and tractability when identifying the
surrogate function.

▶ Tailored and general-purpose solvers.

Ongoing work:

▶ More extensive and stable results (test new gurobi).

▶ Considering black-box functions.

▶ Under/over estimation to obtain lower/upper bounds.

Future work:

▶ How to select intervals, degree, or, in general, surrogate function property?

▶ Dynamically add B−spline basis functions to increase the quality of the
approximation in some regions.
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maximize
∑
j∈J

∑
t∈T

(
τ Πt pjt − Cj w̃jt − (Dj + ΠtEj)z̃jt

)
subject to vt̄ = Vt̄,

vt = vt−1 + 3600 τ (It −
∑
j∈J

qjt − st) t ∈ T,

− Q
− ≤

∑
j∈J

(qjt − qjt−1) ≤ +Q
+

t ∈ T,

Q
−
j ujt + Q

j
gjt ≤ qjt ≤ Q

−
j ujt + Qj gjt j ∈ J, t ∈ T,

P
−
j ujt + P j gjt ≤ pjt ≤ P

−
j ujt + P j gjt j ∈ J, t ∈ T,∑

j∈J

qjt + st ≥ Θ t ∈ T,

st −
∑
j∈J

(Wj w̃jt + Yj z̃jt) ≥ 0 t ∈ T,

gjt + ukt ≤ 1 j ∈ J, k ∈ J, t ∈ T,

gjt − gjt−1 − (w̃jt − wjt) = 0 j ∈ J, t ∈ T,

w̃jt + wjt ≤ 1 j ∈ J, t ∈ T,

ujt − ujt−1 − (z̃jt − zjt) = 0 j ∈ J, t ∈ T,

z̃jt + zjt ≤ 1 j ∈ J, t ∈ T,

pjt ≤ 9.81qjt

6∑
h=0

(
Lhq

h
jt

(
6∑

k=0

Kkv
k
t − L − R0q

2
jt

))
gjt j ∈ J, t ∈ T,

gjt, ujt, w̃jt, z̃jt, wjt, zjt ∈ {0, 1} j ∈ J, t ∈ T,

Q
−
j ≤ qjt ≤ Qj , V ≤ vt ≤ V , P

−
j ≤ pjt ≤ P j , 0 ≤ st ≤ S j ∈ J, t ∈ T.
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